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) _ . geometry'mo Parallels ’ o

A fundamental basis for continuing with geometry is now manditory. The authors

N .

of this sequence of modules have chosen not to cover the initial basic postulates

and theorems since the&_cén be found in nearly every '"old time" favorité geometry

<

. text?’:instead, a list 'of necessary ﬁbstulates and their consequences.is included.

_We recommend that the individual instructor using this module sequence use a

geometry text of his or her own choosing to study the recommended postulates and

h

'“?thébrems. After the postulates and theorems on the following pages have been

studied, gather "your forces and attack the next module Triangle ‘Congruence. From -

!

 Triangle Congruence, you can move to the question of Parallelism.

This module, therefore, gives the student an adequate'experience in traditional
Buclidean,"deductive proof, and teachers should emphasize the nature and place

of this powerful system in thé development of geometry.
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. Ceometry to Parallels °

. S . ",,»' '; ' ~Outline- o - . | 4 -

;:Postuletes . -,ﬂ
1. Two poinbs determine exactly one line.

v 1 S
Yoo

2. Distance Postulate:. To each pair of distlnct points there corresponds a unique

p051t1ve number called the dlstance between the two points.

u?;Bfﬂ*Rgler Postulate* The points on a line may be placed 'in a correspondence with the

N

real numbers such that- ‘

. | . .
. 8. To everw p01nt of the line there corresponds exactly one real number, R

b. For every real number there'corresponds'exactly one point on ' the line,
C. The distance between two p01nts is the absolute value of tHe dlfference

- | of the coordlnates of the points.
L. EVery plane contains at least three noncolllnear p01nts Space contains at
< ‘ ] * . X * . L]
least four™ noncoplanar points. o L :

[

5. If a plane contains two p01nts of a line, the plane contains the whole line.

bl ]

6. Any three p01nts lle in at least one plane, and any three noncolllnear p01nts'

’

lie in exactly one plane.

. )
7.0 If two distinct planaes intensect, their {ntersection is a line., K ,
. .
8. Plane Separation Postulate | L | '
9. Angle Measurement Postulate - . | ~ooa
10. Angle Construction Poetnlate . (Protractor Postulate) . |
11. Aggle Addition Postulate , o - ' o

12. Supplement Postulate g : o | o

] ¢ -
. .

“ mneoreéz _ : . S . S - v

¢ ¢ J , . y
1. If two lines inter'sedt, they intersegt im one point.
. ’ . | | .
"2, 1If a point lies outside a line, exactly one plane contains the line and the point.
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 Theorems
e )

.
' half pMne, there is exactly one other ray such that the angle formedeby the two

10,
11,
L 12,

13,

L.

15,

7.

18.

19."

20,

21,

If two lines intersect, one plane contains both.lineé.',

- On a ray thére is exactly one voint at a given distance:from the endnont of the

ray. (Point - Plotting Theorem)

Midpoint'Theorem. S o _ R - -
’

If two angles form a linear palr ‘the angles are supplementary

In a half—plane, through the endooint of a ray ly1ng in the edge of the

‘rays has a given measure between O and 180.

An angle has exactly ome bisector. S | -

o

If two angles form a linear .pair and have the same measure, then each is a right

angle. . S ..-.“
If two lines gre perpendicular, then their union contains four right angles.
If two lines meet to form a right.angle,ihe.lines are pervpendicular,

-~

All right angles are congruent

’

If two adjacent acute angles have their exterior s1des in. nernendicular llnes, the

angles are complementary.

In adplane, through a given point of a line, there is exactly one” line mermendicular

~to the line, -

\

- If two angles. are both'congruent.and,suoolementary,_tnen each is a right'angle..

1b.

Supplgments of congrueht angles are congruent.
(kmmﬂShents of congruent angles are congruent:

Vertical Angle theorem

Crossbar Theorem SN I S

Congruencé of segments is an equivalence relatlon.

Congruence of angles is an equivalence relation.

v
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| This particular axiomatic develovment may be found in the following texts:

L]

i . R [pe—,
. - . .

- Anderson, Richard D., at. al., School Mathematics Geometry, Houghton Mifflin..Comvany,

Boston, 1969. Chapters 3,4, and 5.

Jurgensen, Ray Cv, et. al, Modern School,Mathemaﬁics Geomjti'x' , Houghton Mifflin .

)

Company, Boston, 1972. Chapters 3 and 4. |
Moise, Edwin E., Floyd L. Downs, Jr., Geometry, Addison - Wesley Publishing

Gompany, Menlo Park, Calif,, 1971, Chapters 3 and .




